|本期目录/Table of Contents|

[1]吴晓刚,王旭东,余腾伟.发动机输出转矩的改进BP神经网络估计[J].电机与控制学报,2010,(03):104-108.
 WU Xiao-gang,WANG Xu-dong,YU Teng-wei.Estimation of engine output torque based on improved BP neural network[J].,2010,(03):104-108.
点击复制

发动机输出转矩的改进BP神经网络估计(PDF)
分享到:

《电机与控制学报》[ISSN:1007-449X/CN:23-1 408/TM]

卷:
期数:
2010年03
页码:
104-108
栏目:
出版日期:
2010-03-30

文章信息/Info

Title:
Estimation of engine output torque based on improved BP neural network
作者:
吴晓刚; 王旭东; 余腾伟
哈尔滨理工大学电气与电子工程学院
Author(s):
WU Xiao-gang; WANG Xu-dong; YU Teng-wei
School of Electrical and Electronic Engineering; Harbin University of Science and Technology; Harbin 150040; China
关键词:
混合动力汽车 神经网络 转矩 估计 最优停止法
Keywords:
hybrid electric vehicle neural network torque estimation optimal stopping rule
分类号:
U464
DOI:
-
文献标志码:
A
摘要:
针对混合动力汽车控制系统的开发过程,提出一种应用改进BP神经网络对发动机输出转矩进行估计的方法。根据在发动机实验台中所测得的部分样本数据,将传统的BP网络误差函数进行改进,建立了发动机输出转矩估计模型,并利用最优停止法对网络进行训练,避免了过拟合现象。实验结果表明,利用改进的BP网络对发动机输出转矩进行估计,减轻了网络训练负担,降低了网络训练的误差,提高了发动机输出转矩估计的精确度。
Abstract:
According to the development process of the control system for Hybrid Electic Vehicle,the estimation method to the torque of the engine is presented. Based on partial sample experiment result which came from engine experiment frame,the error function of the traditional BP neural network was improved. Then the model of engine torque was built. Meanwhile,optimal stopping rule was used to avoid over-fitting. The experiment results indicated that improved BP neural network not only alleviates burden of the netw...

参考文献/References:

-

相似文献/References:

[1]于志伟,曾鸣,乔大鹏.采用复合控制的直流力矩电机摩擦补偿[J].电机与控制学报,2008,(05):539.
 YU Zhi-wei,ZENG Ming,QIAO Da-peng.Complex control for friction compensation in DC motors[J].,2008,(03):539.
[2]吴剑,张承慧,崔纳新.并联式混合动力汽车的BP网络实时能量管理[J].电机与控制学报,2008,(05):610.
 WU Jian,ZHANG Cheng-hui,CUI Na-xin.Real-time energy management of parallel hybrid electric vehicle based on BP neural network[J].,2008,(03):610.
[3]刘陆洲,肖建,王嵩,等.良好非线性模型辨识及其内模控制[J].电机与控制学报,2009,(04):576.
 LIU Lu-zhou,XIAO Jian,WANG Song.Identification of nice nonlinear model and its internal control[J].,2009,(03):576.
[4]刘陆洲,肖建,王嵩.感应电机的新型神经网络广义逆系统解耦控制[J].电机与控制学报,2009,(增刊1):72.
 LIU Lu-zhou,XIAO Jian,WANG Song.Decoupling control of induction motor based on a new type of ANN generalized inverse[J].,2009,(03):72.
[5]罗慧,王友仁,崔江,等.电力电子电路多源特征层融合故障诊断方法[J].电机与控制学报,2010,(04):92.
 LUO Hui,WANG You-ren,CUI Jiang,et al.Intelligent fault diagnosis for power electronic circuits based on multi-source feature-level fusion[J].,2010,(03):92.
[6]宋建成,郑建斌,曲兵妮,等.开关磁阻电机的最小二乘支持向量机建模与仿真[J].电机与控制学报,2010,(05):32.
 SONG Jian-cheng,ZHENG Jian-bin,QU Bing-ni,et al.Modeling and simulation for switched reluctance motor based on least squares support vector machine[J].,2010,(03):32.
[7]刘玉娇,蒋传文.考虑负荷周期性和变化率的短期电价预测[J].电机与控制学报,2010,(06):21.
 LIU Yu-jiao,JIANG Chuan-wen.Considering cyclical nature and change rate of load on short-term electricity price forecasting[J].,2010,(03):21.
[8]李永坚,许志伟,彭晓,等.SRM积分滑模变结构与神经网络补偿控制[J].电机与控制学报,2011,(01):33.
 LI Yong-jian,XU Zhi-wei,PENG Xiao.The hybrid control of SRM based on sliding-mode variable structure control with integral action and neural network compensation[J].,2011,(03):33.
[9]刘艳,齐晓燕.感应电机龙伯格—滑模观测器参数辨识方法[J].电机与控制学报,2011,(08):93.
 LIU Yan,QI Xiao-yan.An Luenberger-sliding mode observer parameter identification for induction motors[J].,2011,(03):93.
[10]孙晓东,朱熀秋,张涛,等.无轴承永磁同步电机径向悬浮力动态解耦控制[J].电机与控制学报,2011,(11):21.
 SUN Xiao-dong,ZHU Huang-qiu,ZHANG Tao,et al.Dynamic decoupling control of radial suspension forces on bearingless permanent magnet-type synchronous motors[J].,2011,(03):21.

备注/Memo

备注/Memo:
教育部科学技术研究研究重点项目(208180); 黑龙江省教育厅科学技术研究重点项目(1153lz03)
更新日期/Last Update: 2010-06-04