|本期目录/Table of Contents|

[1]杨永明,陈学军,陈民铀,等.电机局部放电超声特性[J].电机与控制学报,2011,(10):63-68.
 YANG Yong-ming,CHEN Xue-jun,CHEN Min-you,et al.Ultrasonic characteristics of motor partial discharge[J].,2011,(10):63-68.
点击复制

电机局部放电超声特性(PDF)
分享到:

《电机与控制学报》[ISSN:1007-449X/CN:23-1 408/TM]

卷:
期数:
2011年10
页码:
63-68
栏目:
出版日期:
2011-10-20

文章信息/Info

Title:
Ultrasonic characteristics of motor partial discharge
作者:
杨永明; 陈学军; 陈民铀; 王远;
重庆大学输配电装备及系统安全与新技术国家重点实验室; 莆田学院电子信息工程系;
Author(s):
YANG Yong-ming1CHEN Xue-jun12CHEN Min-you1WANG Yuan1
1.State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University,Chongqing 400044,China;2.Department of Electronic Engineering, Putian University,Putian 351100,China
关键词:
局部放电 电机 放电模型 超声 特性
Keywords:
partial discharge motors ultrasonic characteristic virtual instrument
分类号:
TM835
DOI:
-
文献标志码:
A
摘要:
为探索电机局部放电检测新方法,分析电机局部放电机理和国内外对电机局部放电监测研究状况,提出利用超声法对电机局部放电进行监测。为此,构建电机定子绕组存在的几种典型局部放电模型和实验硬件系统,并进行放电实验。在局部放电实验室,采用一种窄带超声传感器对几种典型局部放电超声信号进行采集。对相同条件下采集到的各种模型局部放电超声信号特性进行分析和比较。实验结果分析表明,不同类型的局部放电,无论其超声信号波形还是频谱特征均存在差异。因此,可以对电机局部放电超声信号进行特征提取,为实现基于超声法的电机放电故障模式识别奠定了基础。
Abstract:
In order to explore a new measurement method of partial discharge(PD) for motor,the electrical mechanism of PD and the situation of PD monitoring were discussed.An approach using ultrasonic for monitoring PD in a motor was proposed.Then several typical PD models of motor windings were constructed,and the PD monitoring system was developed.In the PD laboratory,four narrow-band ultrasonic sensors were used to detect the ultrasonic of the typical PD models.And under the same experiment conditions,t...

参考文献/References:

-

相似文献/References:

[1]朱显辉,崔淑梅,师楠,等.电动汽车电机可靠性的灰色预测模型[J].电机与控制学报,2012,(08):42.
 ZHU Xian-hui,CUI Shu-mei,SHI Nan,et al.Grey prediction model of motor reliability of electric vehicle[J].,2012,(10):42.
[2]陈庆国,蒲金雨,丁继媛,等. 电力电缆局部放电的高频与特高频联合检测[J].电机与控制学报,2013,(04):39.
 CHEN Qing-guo,PU Jin-yu,DING Ji-yuan,et al.[J].,2013,(10):39.
[3]彭超,阮江军,黄道春,等. 基于特高频谱图统计参量的局部放电定位方法研究[J].电机与控制学报,2014,18(09):1.
 PENG Chao,UAN Jiang-jun,HUANG Dao-chun,et al. Research on partial discharge location method based onPRPD statistic parameters of ultra-high frequency[J].,2014,18(10):1.
[4]汪可,张书琦,李金忠,等. 基于灰度图像分解的局部放电特征提取与优化[J].电机与控制学报,2018,22(05):25.[doi:10.15938/j.emc.2018.05.004]
 WANG Ke,ZHANG Shu-qi,LI Jin-zhong,et al. Partial discharge feature extraction and optimizationbased on gray image decomposition[J].,2018,22(10):25.[doi:10.15938/j.emc.2018.05.004]

备注/Memo

备注/Memo:
输配电装备及系统安全与新技术国家重点实验室自主研究项目(2007DA10512709206)
更新日期/Last Update: 2012-04-07