|Table of Contents|

Survey on motion control technologies of high performance mechanical servo systems(PDF)

[ISSN:1007-449X/CN:23-1 408/TM]

Research Field:
Publishing date:


Survey on motion control technologies of high performance mechanical servo systems
LIU Qiang
College of Mechanical Electronic and Automation; Huaqiao University
motion control friction feedforward servo system high performance' target='_blank'> COLOR: blue" href="http://define.cnki.net/WebForms/WebDefines.aspx?searchword=high+performance" target="_blank">
High performance mechanical servo systems are widely used in civil and military industries,and for these systems,the performance improvement of the servo controller can increase productivity and product quality.The development of high performance motion control theory is reviewed,and the basic design principles of servo controllers are summarized;Contributions from digital feedforward tracking control scheme,closed loop controller design and friction compensation method are surveyed.Finally,several problems which require further investigation of high performance motion control are discussed.


[1]KIONG T K, HENG L T, HUIFANG D, et al. Precision Motion Control Design and Implementation[M]. Berlin Heidelberg: Springer,2001.

[2]LIU Z Z, LUO F L, RAHMAN M A. Robust and precision motion control system of linear-motor direct drive for high-speed X-Y table positioning mechanism[J]. IEEE Trans Industrial Electronics, 2005,52(5): 1357-1363.

[3]OHNISHI K. A new servo method in mechatronics[J]. Trans Jpn Soc Elect Eng, 1987,1: 83-86.

[4]LEE H S. Robust motion controller design for high-accuracy positioning systems[J]. IEEE Transactions on Industrial Electronics, 1996, 43: 48-55.

[5]KEMPF C J, KOBAYASHI S. Disturbance observer and feedforward design for a high-speed direct-drive positioning table[J]. IEEE Transactions on Control Systems Technology, 1999,7: 513-526.

[6]WHITE M T, et al. Improved track following in magnetic disk drives using a disturbance observer[J]. IEEE Transactions on Mechatronics, 2000, 5: 3-11.

[7]LIU C S, PENG H. Disturbance observer based tracking control[J]. ASME Journal of Dynamic Systems, Measurement, and Control, 2000, 122: 332-335.

[8]KOMADA S, MACHII N, HORI T, et al. Control of redundant manipulators considering order of disturbance observer[J]. IEEE Transactions on Industrial Electronics, 1999, 47(2): 413-420.

[9]TESFAYE A, LEE H S, TOMIZUKA M. A sensitivity optimization approach to design of a disturbance observer in digital motion control systems[J]. IEEE Transactions on Mechatronics, 2000, 5(1): 32-38.

[10]SHAHRUZ S M. Performance enhancement of a class of nonlinear systems by disturbance observers[J]. IEEE Transactions on Mechatronics, 2000, 5(3): 319-323.

[11]EOM K S, SUH H, CHUNG W K. Disturbance observer based path tracking control of robot manipulator considering torque saturation[J]. IEEE Transactions on Mechatronics, 2001, 6(11): 325-343.

[12]GODLER I, HONDA H, OHNISHI K. Design guidelines for disturbance observer’s filter in discrete time[J].Proc Int Workshop Advanced Motion Control, 2002: 390-395.

[13]RYOO J R, DOH T Y, CHUNG M J. Robust disturbance observer for the track-following control system of an optical disk drive[J]. Control Engineering Practice, 2004, 12: 577-585.

[14]BERTOLUZZO M, BUJA G S, STAMPACCHIA E. Performance analysis of a highband width torque disturbance compensator[J]. IEEE/ASME Trans Mechatronics, 2004, 9(4): 653-660.

[15]YAO B. Adaptive Robust Control of Nonlinear Systems with Application to Control of Mechanical Systems[D]. Berkeley: University California, 1996.

[16]YAO B, MOHAMMED A M, MASAYOSHI T. Highperformance robust motion control of machine tools: an adaptive robust control approach and comparative experiments[J]. IEEE Transactions on Mechatronics, 1997, 2: 63-76.

[17]XU L, YAO B. Output feedback adaptive robust precision motion control of linear motors[J]. Automatica, 2001,37: 1029-1039.

[18]YAO B, BU F, REEDY J, et al. Adaptive robust control of single-rod hydraulic actuators: theory and experiments[J]. IEEE/ASME Transactions on Mechatronics, 2000, 5: 79-91.

[19]YAO B, TOMIZUKA M. Adaptive robust control of mimo nonlinear systems in semi-strict feedback forms[J]. Automatica, 2001, 37: 1305-1321.

[20]CHOI B K, CHOI C H, LIM H. Model-based disturbance attenuation for CNC machining centers in cutting process[J]. IEEE/ASME Trans Mechatron, 1999, 4: 157-168.

[21]CHOI C H, KWAK N. Disturbance attenuation in robot control, Proc Int Conf Robotics and Automation[J], Seoul, 2001:2560-2565.

[22]CHOI C H, KWAK N. Robust control of robot manipulator by modelbased disturbance attenuation[J]. IEEE/ASME Trans Mechatron, 2003, 8(4): 511-513.

[23]ZHU H A, HONG G S, TEO C L, et al. Internal model control with enhanced robustness[J]. Int J Syst Sci, 1995,26(2): 277-293.

[24]HSIA T T. A new technique for robust control of servo systems[J]. IEEE Trans on Indust Elec, 1989,36(1): 1-7.

[25]YOUCEFTOUMI K, ITO O. A time delay controller for systems with unknown dynamics[J]. Journal of Dynamic Systems, Measurement and Control, 1990,112(1): 133-141.

[26]YOUCEF-TOUMI K, REDDY S. Analysis of linear time invariant systems with time delay[J]. Journal of Dynamic Systems, Measurement and Control, 1992, 114(4): 544-555.

[27]CHANG P H, PARK S H. On improving time-delay control under certain hard nonlinearities[J]. Mechatronics, 2003, 13(4): 393-412.

[28]KIM B K, CHOI H T, CHUNG W K, et al. Analysis and design of robust motion controllers in the unified framework[J]. Journal of Dynamic Systems, Measurement and Control, 2002, 124(2): 313-320.

[29]KWON S J, CHUNG W K. Perturbation Compensator Based Robust Tracking Control and State Estimation of Mechanical Systems[M]. Berlin:Springer, 2004.

[30]TOMIZUKA M, TSAO T C, CHEW K K. Analysis and synthesis of discrete-time repetitive controllers[J]. Journal of Dynamic Systems, Measurement and Control, 1989, 111: 353-358.

[31]YAMADA M, RIADH Z, FUNAHASHI Y. Design of discrete-time repetitive control system for pole placement and application[J]. IEEE/ASME Transactions on Mechatronics, 1999, 4(2): 110-118.

[32]CRUDELE M, KURFESS T R. Implementation of a fast tool servo with repetitive control for diamond turning[J]. IEEE/ASME Transactions on Mechatronics, 2003, 13(3): 243-257.

[33]WEERASOORIYA S, EISHARKAWI M A. Adaptive tracking control for high performance DC drives[J]. IEEE Transactions on Energy Conversion, 1990, 4(3): 502-508.

[34]DESSAINT L A. A DSP-based adaptive controller for a smooth positioning system[J]. IEEE Transactions on Industrial Electronics, 1990, 37(5): 372-377.

[35]UTKIN V I. Sliding mode control design principles and applications to electric drives[J]. IEEE Trans on Industrial Electronics, 1993, 40(1): 23-36.

[36]LI Y, JAN W. Model reference discrete-time sliding mode control of linear motor precision servo systems[J]. IEEE/ASME Transactions on Mechatronics, 2004, 14(7): 835-851.

[37]CAVALLO A, NATALE C. High-order sliding control of mechanical systems: theory and experiments[J]. Control Engineering Practice, 2004, 12(9): 1139-1149.

[38]JEE S, KOREN Y. Adaptive fuzzy logic controller for feed drives of a CNC machine tool[J]. Mechatronics, 2004, 14(3): 299-326.

[39]HORNG J H. Neural adaptive tracking control of a DC motor[J]. Information Sciences, 1999,118(1): 1-13.

[40]ERTUGRUL M, KAYNAK O. Neuro sliding mode control of robotic manipulators[J]. Mechatronics, 2000, 10(1): 239-263.

[41]ASTROM K J, STEMBY J. Zeros of sampled systems[J]. Automatica, 1984, 20(1): 31-38.

[42]TOMIZUKA M. Zero phase error tracking algorithm for digital control[J]. ASME Journal of Dynamic Systems, Measurement, and Control, 1987, 109(1): 65-68.

[43]HAACK B, TOMIZUKA M. The effect of adding zeros to feedforward controllers[J]. ASME Journal of Dynamic Systems, Measurement, and Control, 1991, 113(1):6-10.

[44]TORFS D. Extended bandwidth zero phase error tracking control of nonminimum phase systems[J]. ASME Journal of Dynamic Systems, Measurement, and Control, 1992, 114: 347-351.

[45]TOMIZUKA M. On the design of digital tracking controllers[J]. ASME Journal of Dynamic Systems, Measurement, and Control, 1993, 115(2B): 412-418.

[46]XIA J Z, MENQ C H. Precision tracking control of non-minimum phase systems with zero phase error[J]. International Journal of Control, 1995, 61: 791-807.

[47]FUNAHASHI Y, YAMADA M. Zero phase error tracking controllers with optimal gain characteristics[J]. ASME Journal of Dynamic Systems, Measurement, and Control, 1993, 115: 311-318.

[48]TSAO T C. Optimal feedforward digital tracking controller design[J]. ASME Journal of Dynamic Systems, Measurement, and Control, 1994, 116: 583-591.

[49]GUO L, TOMIZUKA M. Highspeed and high-precision motion control with an optimal hybrid feedforward controller[J]. IEEE/ASME Trans Mechatron, 1997, 2(2): 110-122.

[50]YEH S S, HSU P L. An optimal and adaptive design of the feedforward motion controller[J]. IEEE Transactions on Mechatronics, 1999, 4: 428-438.

[51]TSAO T C, TOMIZUKA M. Adaptive zero phase error tracking controller for digital control[J]. ASME Journal of Dynamic Systems, Measurement and Control, 1987, 109(3):349-354.

[52]TSUTOMU M, YUICHI C, YASUHIKO K, et al. Two delay robust digital control and its applications—avioding the problem on unstable limiting zeros[J]. IEEE Trans on Automated Control, 1990, 35(8): 962-970.

[53]CHEN T, FRANCIS B. Optimal Sampled Data Control Systems[M]. New York: Springer, 1995.

[54]FUJIMOTO H, KAWAMURA Y. Perfect tracking control based on multirate feedforward control with generalized sampling periods[J]. IEEE Transactions on Industrial Electronics, 2001, 48(3): 636-644.

[55]FUJIMOTO H. General Framework of Multirate Sampling Control and Applications to Motion Control Systems[D]. Tokyo: University of Tokyo, 2000.

[56]FUJIMOTO H, YAO B. Multirate adaptive robust control for discrete time non-minimum phase systems and application to linear motors[J]. IEEE Transactions on Mechatronics, 2005, 10(4): 371-377.

[57]HIRATA M, TOMIZUKA M. Multirate short track-seeking control of hard disk drives for computation saving[C]//IEEE Conference on Decision and Control. Hawaii:IEEE Presser, 2003:3420-3425.

[58]ARMSTRONG B, DUPONT P, CANUDAS C de Wit, A survey of models, analysis tools and compensation methods for the control of machines with friction[J]. Automatica, 1994, 30(7): 1083-1138.

[59]DOWSON D. History of Tribology[M]. London: Longman Ltd, 1966.

[60]HERSEY M D. Theory and Research in Lubrification[M]. New York: John Wily, 1966.

[61]KARNOPP D. Computer simulation of stick-slip friction in mechanical dynamic systems[J]. ASME Journal of Dynamic Systems, Measurement, and Control, 1985, 107: 100-103.

[62]HAESSIG D A, FRIEDLAND B. On the modeling and simulation of friction[J]. ASME Journal of Dynamic Systems, Measurement, and Control. 1991, 113: 354-362.

[63]DAHL P. A solid friction model[J]. Aerospace Corp, 1968.

[64]CANUDAS C de Wit. A new model for control of systems with friction[J]. IEEE Transactions on Automatic Control, 1995, 40(3): 419-425.

[65]BARABANOV N, ORTEGA R. Necessary and sufficient conditions for passivity of the Lugre friction model[J]. IEEE Trans Auto Contr, 2000, 45(4): 830-832.

[66]SWEVERS J, BENDER F A, GANSEMAN C G, et al. An integrated friction model structure with improved presliding behavior for accurate friction compensation[J]. IEEE Trans Auto Contr, 2000, 45(4): 675-686.

[67]FRIEDLAND B, PARK Y J. On adaptive friction compensation[J]. IEEE Transactions on Automatic Control, 1992, 37(10): 1609-1612.

[68]AMIN J, FRIEDLAND B. Implementation of a friction estimation and compensation technique[J]. IEEE Control Systems, 1997, 1: 71-76.

[69]LIAO TehLu, CHIEN Tsun I. An exponentially stable adaptive friction compensator[J]. IEEE Trans Auto Contr, 2000, 45(5): 977-980.

[70]ZHANG T, GUAY M. Comments on “an exponentially stable adaptive friction compensator”[J]. IEEE Trans Auto Contr, 2001, 46(11): 1844-1845.

[71]PHILLIPS S M, BALLOU K R. Friction modeling and compensation for an industrial robot[J]. Journal of Robotic Systems. 1993, 10(7): 947-971.

[72]CANUDAS de W C, NOEL P, AUBIN A, et al. Adaptive friction compensation in robot manipulators: lowvelocities[J]. International Journal of Robotics Research, 1993. 10(3): 189-199.

[73]FEEMSTER M. Adaptive control techniques for friction compensation[J]. Mechatronics, 1999, 9: 125-145.

[74]LEE S W, KIM J H. Friction identification using evolution strategies and robust control of positioning tables[J]. ASME Journal of Dynamic Systems, Measurement, and Control, 1999, 121: 619-624.

[75]YEN J Y, HUANG S J, LU S S. A new compensation for servo systems with position dependent friction[J]. ASME Journal of Dynamic Systems, Measurement, and Control, 1999, 121: 612-618.

[76]CANUDAS de W C, LISCHINSKY P. Adaptive friction compensation with partially known dynamic friction model[J]. International Journal of Adaptive Control and Signal Processing, 1997, 11: 65-80.

[77]HIRSCHORN R M, MILLER G. Control of nonlinear systems with friction[J]. IEEE Transactions on Control Systems Technology, 1999, 7(5): 588-595.

[78]VEDAGARBHA P, DAWSON D N, FEENSTER M. Tracking control of mechanical systems in the presence of nonlinear dynamic friction effects[J]. IEEE Transactions on Control Systems Technology, 1999, 7(4): 446-456.

[79]TOMEI P. Robust adaptive friction compensation for tracking control of robot manipulators[J]. IEEE Trans Auto Contr, 2000, 45(6): 2164-2169.

[80]YANG S, TOMIZUKA M. Adaptive pulse width control for precise positioning under influence of sticktion and coulomb friction[J]. ASME Journal of Dynamic Systems, Measurement, and Control, 1988, 110(3): 221-227.

[81]HOROWITZ L. Extensions of dithered feedback systems[J]. International Journal of Control, 1991, 54(1): 83-109.

[82]KIM J J, SINGH T. Controller design for flexible systems with friction: pulse amplitude control[J]. ASME J Dyn Syst Meas, 2005,127(9): 336-344.

[83]LUH J, FISHER W, PAUL R. Joint torque control by a direct feedback for industrial robots[J]. IEEE Transactions on Automatic Control, 1983, 28(2): 153-161.

[84]TEETER J T, CHOW M Y, JAME J. A novel fuzzy friction compensation approach to improve the performance of a dc motor control system[J]. IEEE Transactions on Industrial Electronics, 1996,43(1), 113-120.

[85]TZES A, PENG P Y, GUTHY J. Genetic-based fuzzy clustering for DC-motor friction identification and compensation[J]. IEEE Transactions on Control Systems Technology, 1998,6(1), 462-472.

[86]POPOVIC M R, GORINEVSKY D M, GOLDENBERG A A. High-precision positioning of a mechanism with nonlinear friction using a fuzzy logic pulse controller[J]. IEEE Trans Cont Sys Tech, 2000, 8(1): 151-159.

[87]RASTKO R S, LEWIS F L. Deadzone compensation in motion control systems using neural networks[J]. IEEE Transactions on Automatic Control, 2000, 45(4): 602-613.

[88]KIM Y H, LEWIS F L. Reinforcement adaptive learning neural network based friction compensation for high speed and precision[C]//Proceedings of the 37th IEEE Conference on Decision & Control.[s.n.],1998:1064-1069.

[89]DU H L, NAIR S S. Modeling and compensation of low-velocity friction with bounds[J]. IEEE Transactions on Control Systems Technology, 1999, 7(1): 110-121.


Last Update: 2008-12-12